STABLE, TRANSFORMABLE, UNIVERSALLY APPLICABLE

THE NEW MAGNEZIX® CBS OFFERS NEW ADVANTAGES!

Intelligent innovations for a better life.

www.syntellix.com
The advantages are clear to see – at a glance

Unique safety drive head.

Metallic and transformable.
Osteoconductive.
Reduced infection risk.

Suitable for MRI and CT diagnostics.
Virtually no radiological artifacts.

Higher stability than PLA/PGA implants.
Avoids stress shielding.
No foreign materials remain.

No cobalt, chromium, nickel or aluminium.
Excellent biocompatibility, no known allergies.

Virtually no radiological artifacts.
MAGNEZIX® CBS
UNIQUE ADVANTAGES, REMARKABLY VERSATILE

MAGNEZIX®, the advanced alternative to titanium and polymer materials, is now available as a cortical bone screw. MAGNEZIX® CBS offers the ideal combination of a remarkably versatile implant together with the proven benefits of the MAGNEZIX® material. It is in particular the outstanding stability of the MAGNEZIX® CBS screw compared with regular PLA cortical screws which opens the door to a broad spectrum of application options.

Acknowledged MAGNEZIX® benefits:

Stability: MAGNEZIX® CBS is much more stable than polymer implants and clearly superior to conventional resorbable devices.

Osteoconductivity: MAGNEZIX® CBS promotes bone growth and is not only degraded but actually transforms into endogenous bone tissue.

Infection inhibiting: While magnesium degrades it creates an alkaline, anti-bacterial milieu.

Compatibility: MAGNEZIX® offers outstanding biocompatibility and the alloy’s components are not causing any known allergies (it is completely free of nickel, chromium, cobalt and aluminium components).

CE

CE approval was granted in 2013 for MAGNEZIX® compression screws, enabling the first clinical use of a self-dissolving biometallic screw in Europe. In 2016 and 2017 the CE-certified MAGNEZIX® product portfolio was expanded to include the Pin and the CBS cortical bone screw.

The better implant:
The metal MAGNEZIX® CBS is not only considerably more stable than cortical screws made of PLA/PGA but is actually transformed by the body into bone. A definite advantage for users and patients.
Like all other MAGNEZIX® products, the CBS has more load capacity and is more stable than comparable polymer implants. For example, a corroded CBS offers higher torsional force than a non-degraded PLA screw of the same diameter. These definite advantages are also very persuasive for day-to-day OP activities!
MAGNEZIX®: THE MATERIAL

REVOLUTIONARY AND FUTURE-PROOF

MAGNEZIX® is the name of a magnesium-based alloy (more than 90 % magnesium) which, while offering metallic properties, is completely transformed within the body and is replaced by endogenous tissue. The biomechanical properties of MAGNEZIX® are very similar to that of human bone.

A number of studies also show that magnesium alloys have osteoconductive properties\(^2\), too. The degradation of magnesium is a corrosion process which also creates an anti-bacterial alkaline milieu in the immediate vicinity of the implant. As a result, MAGNEZIX® (comprising more than 90 % magnesium) is anticipated to have anti-infectious properties\(^3\).

Furthermore, MAGNEZIX® implants are both radiologically visible as well as being MRI conditional and only generate minimal artifacts (see also the instructions for use).

Metal transforms into bone

Overview A: Histological evaluations of an animal study show complete transformation of the metal implant after a 12 month implant period.

Section B: The new bone formation (osteoid) at the surface of the degraded implant is histologically verified.

Section C: The presence of osteoclasts and osteoblasts characterises the bone transformation process.

INDICATIONS

NEW, WIDER APPLICATION RANGE

The MAGNEZIX® CBS cortical bone screw is suitable, depending upon the chosen size, as a bone screw (lag screw, position screw) for children, adolescents and adults for adaptation-capable or exercise-capable fixation of bones and bone fragments, for example:

MAGNEZIX® CBS 2.0, 2.7, 3.5:
- Intra- and extra-articular fractures of small bones and bone fragments
- Arthrodeses, osteotomies or pseudarthroses of small bones and joints
- Small bony ligament and tendon ruptures
- Osteochondral fractures and dissecates
- Similar indications

MAGNEZIX® CBS 2.7 and 3.5:
- Carpal, metacarpal, tarsal and metatarsal bones
- Epicondylus humeri
- Metaphyseal fractures of small and medium-sized bones and bone fragments
- Similar indications

MAGNEZIX® CBS 2.0:
- Phalangeal and metacarpal bones
- Osteochondrosis dissecans
- Similar indications

MAGNEZIX® CBS combine **metal stability and transformation**. They set new benchmarks in orthopaedics, traumatology and sports surgery.

UNIQUE IN THE WORLD!
Application examples

- Tarsal bones (in particular talus bone and navicular bone)
- Metatarsals
- Hallux valgus
- Fingers and thumb
- Osteochondral flakes
- Osteochondrosis dissecans
- Patella
- Proximal tibia and fibula
- Distal radius and ulna
- Processus styloideus radii
- Carpals and metacarpals
- Osteochondral flakes
- Osteochondrosis dissecans
- Distal tibia and fibula
- Medial and lateral malleolus
- Syndesmosis rupture
- Tarsal bones (in particular talus bone and navicular bone)
- Metatarsals
- Hallux valgus
NO METAL REMOVAL NECESSARY

MAGNEZIX® WAIVES THE NEED FOR A SECOND OPERATION TO REMOVE METALWORK

Magnesium is a physiological element required by the human body which can support the healing process. During the course of healing, the MAGNEZIX® implant gradually degrades while the regenerating bone gradually gains in load-bearing capacity. **There is no need for a second operation to remove metalwork.** This saves costs and time and reduces risks.

Arguments for the removal of implants are fairly obvious:

- possible negative influence on bone growth
- functional restrictions due to the presence of implants
- irritation of joints, tendons, muscles, subcutis and skin
- possible allergies
- reduced elasticity, stress shielding of bones
- primary infections and later infections
- more difficult diagnostics and therapy conditions due to renewed fracture of the affected bone and/or the implant (due to accident or subsequently due to aging)
- limitations to diagnostics (CT, MRI)
- implant is a nuisance in prominent body locations
- higher patient expectations

Removal of metal represents higher levels of potential complications for surgeons:

- The intervention must be planned during implantation in order to allow simplified access if necessary.
- Technical complications, such as worn drives, can make removal considerably more difficult.
- Nerve and vessel lesions can be caused.
- May cause infections to bones and soft tissues as well as interfere in wound healing.
- Renewed fractures may occur (intraoperatively, postoperatively or at a breaking point).
- Increased scarring, possibly the need for scar correction.
FUNCTIONAL DESIGN

ATTENTION TO DETAIL TO ENSURE YOUR SURGICAL SUCCESS

Unique, transformable magnesium alloy
Using MAGNEZIX® implants makes the need for later metal removal obsolete and also supports the bone’s healing process. MAGNEZIX® is bioabsorbable and biocompatible.

Head design
The head of the MAGNEZIX® CBS, with a typical cortical screw design, allows for stable repositioning of the bone fragment, with good compression characteristics.

Drive design
The special design of the TORX-based drive protects the implant in the shaft area from failure. The drive "slips" during the screwing-in operation if the torsional load is too high.

Thread design
The thread design, which is typical for cortical screws, produces strong fixation in cortical bone. A dimension-dependent thread pitch supports the controlled compression of bone fragments.

Screw tip
The design features chip flutes to improve the thread quality and ease the screwing-in. However, a pre-cutting of the thread in cortical bone is required.
THE IMPLANTS
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>IMPLANT</th>
<th>DIMENSIONS</th>
<th>LENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNEZIX® CBS 2.0</td>
<td>Diameter</td>
<td>2.0 mm</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>4.0 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(in 2-mm steps)</td>
</tr>
<tr>
<td>MAGNEZIX® CBS 2.7</td>
<td>Diameter</td>
<td>2.7 mm</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>5.0 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(in 2-mm steps)</td>
</tr>
<tr>
<td>MAGNEZIX® CBS 3.5</td>
<td>Diameter</td>
<td>3.5 mm</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>6.0 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(in 2-mm steps)</td>
</tr>
</tbody>
</table>

DIMENSIONS IN A STABILITY COMPARISON

<table>
<thead>
<tr>
<th>PLA/PGA comparative dimensions regarding stability</th>
<th>2.7</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 MAGNEZIX® CBS diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7 MAGNEZIX® CBS diameter</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 MAGNEZIX® CBS diameter</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
ADDITIONAL MAGNEZIX® IMPLANTS

<table>
<thead>
<tr>
<th>PIN</th>
<th>DIMENSIONS</th>
<th>LENGTHS</th>
<th>CS</th>
<th>DIMENSIONS</th>
<th>LENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNEZIX® Pin 1.5</td>
<td>Diameter</td>
<td>1.5 mm</td>
<td>8 to 30 mm</td>
<td>MAGNEZIX® CS 2.0</td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>2.5 mm</td>
<td></td>
<td></td>
<td>Head diameter</td>
</tr>
<tr>
<td>MAGNEZIX® Pin 2.0</td>
<td>Diameter</td>
<td>2.0 mm</td>
<td>8 to 40 mm</td>
<td>MAGNEZIX® CS 2.7</td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>3.0 mm</td>
<td></td>
<td></td>
<td>Head diameter</td>
</tr>
<tr>
<td>MAGNEZIX® Pin 2.7</td>
<td>Diameter</td>
<td>2.7 mm</td>
<td>12 to 50 mm</td>
<td>MAGNEZIX® CS 3.2</td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>4.0 mm</td>
<td></td>
<td></td>
<td>Head diameter</td>
</tr>
<tr>
<td>MAGNEZIX® Pin 3.2</td>
<td>Diameter</td>
<td>3.2 mm</td>
<td>12 bis 50 mm</td>
<td></td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>Head diameter</td>
<td>5.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL REFERENCES

Syntellix AG
Aegidientorplatz 2a
30159 Hannover
T +49 511 270 413 50
F +49 511 270 413 79
info@syntellix.com
www.syntellix.com

Implants are manufactured in Germany in cooperation with Königsee Implantate GmbH.

Errors and omissions reserved.