Titel | Autor | DOI | Jahr | Anfordern |
---|---|---|---|---|
/// Magnesium als Biomaterial Understanding Magnesium Corrosion - A Framework for Improved Alloy Performance. | Guangling Song, Andrej Atrens | 10.1002/adem.200310405 | 2003 | |
The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by magnesium alloys, and also of the environmental factors of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service. Info Schliessen | ||||
/// Magnesium als Biomaterial Magnesium degradation products: Effects on tissue and human metabolism. | Jan-Marten Seitz, Rainer Eifler, Friedrich-Wilhelm Bach, Hans Jürgen Maier | 10.1002/jbm.a.35023 | 2013 | |
Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg2+. In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg2+, OH− ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account. Info Schliessen | ||||
/// Magnesium als Biomaterial Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations | Elmar Willbold, Andreas Weizbauer, Anneke Loos, Jan-Marten Seitz, Nina Angrisani, Henning Windhagen, Janin Reifenrath | 10.1002/jbm.a.35893 | 2016 | |
The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Further, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Early Results Using a Biodegradable Magnesium Screw for Modified Chevron Osteotomies | Christian Plaaß, Sarah Ettinger, Lena Sonnow, Sören Könneker, Yvonne Noll, Andreas Weizbauer, Janin Reifenrath, Leif Claassen, Kiriakos Daniilidis, Christina Stukenborg-Colsman, Henning Windhagen | 10.1002/jor.23241 | 2016 | ![]() |
This is the first larger study analyzing the use of magnesium-based screws for fixation of modified Chevron osteotomies in hallux valgus surgery. 44 patients (45 feet) were included in this prospective study. A modified Chevron osteotomy was performed on every patient and a magnesium screw used for fixation. The mean clinical follow up was 21.4 weeks. The mean age of the patients was 45.5 years. 40 patients could be provided with the implant, in 4 patients the surgeon decided to change to a standard metallic implant. The AOFAS, FAAM and pain NRS-scale improved markedly. The hallux valgus angle, intermetatarsal angle and sesamoid position improved significantly. Seven patients showed dorsal subluxation, rotation or medial shifting of the metatarsal heads within the first three months. One of these patients was revised, in all others the findings were considered clinically not significant or the patients refused revision. This study shows the feasibility of using magnesium screws in Hallux valgus-surgery. Surgeons starting with the use of these implants should be aware of the proper handling of these implants and should know about corrosion effects during healing and its radiographic appearance. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Biomechanical characteristics of bioabsorbable magnesium-based (MgYREZr-alloy) interference screws with different threads. | Marco Ezechieli, Max Ettinger, Carolin König, Andreas Weizbauer, Patrick Helmecke, Robert Schavan, Arne Lucas, Henning Windhagen, Christoph Becher | 10.1007/s00167-014-3325-6 | 2014 | |
Purpose: Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Biodegradable magnesium implants for orthopedic applications. | Hazibullah Waizy, Jan-Marten Seitz, Janin Reifenrath, Andreas Weizbauer, Friedrich-Wilhelm Bach, Andrea Meyer-Lindenberg, Berend Denkena, Henning Windhagen | 10.1007/s10853-012-6572-2 | 2012 | ![]() |
The clinical application of degradable orthopedic magnesium implants is a tangible vision in medical science. This interdisciplinary review discusses many different aspects of magnesium alloys comprising the manufacturing process and the latest research. We present the challenges of the manufacturing process of magnesium implants with the risk of contamination with impurities and its effect on corrosion. Furthermore, this paper provides a summary of the current examination methods used in in vitro and in vivo research of magnesium alloys. The influence of various parameters (most importantly the effect of the corrosive media) in in vitro studies and an overview about the current in vivo research is given. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Magnesium-Based Compression Screws: A Novelty in the Clinical Use of Implants | Jan-Marten Seitz, Arne Lucas, Martin Kirschner | 10.1007/s11837-015-1773-1 | 2016 | ![]() |
Magnesium alloys are currently subject to much research for use in biodegradable implant applications. The challenge in this field of material development comprises the design of an alloy that provides adequate mechanical and corrosion properties combined with an excellent biocompatibility. While there are many approaches in current literature only one Mgbased application shows the potential to hit the market. MAGNEZIX Compression Screws are the world’s first approved/CE-certified magnesium-based implants designed for use in biodegradable osteosyntheses applications in humans. Therefore, this paper focusses on challenges and current clinical results achieved by means of degradable compression screws. Insights into the screws’ process chain and approval processes are given. As these innovative screws have already been on the market for 2 years long-term results based on their use in surgery are discussed. Info Schliessen | ||||
/// Magnesium als Biomaterial Recent advances on the development of magnesium alloys for biodegradable implants. | Yongjun Chen, Zhigang Xu, Christopher Smith, Jag Sankar | 10.1016/j.actbio.2014.07.005 | 2014 | |
In recent years, much progress has been made on the development of biodegradable magnesium alloys as “smart” implants in cardiovascular and orthopedic applications. Mg-based alloys as biodegradable implants have outstanding advantages over Fe-based and Zn-based ones. However, the extensive applications of Mg-based alloys are still inhibited mainly by their high degradation rates and consequent loss in mechanical integrity. Consequently, extensive studies have been conducted to develop Mg-based alloys with superior mechanical and corrosion performance. This review focuses on the following topics: (i) the design criteria of biodegradable materials; (ii) alloy development strategy; (iii) in vitro performances of currently developed Mg-based alloys; and (iv) in vivo performances of currently developed Mg-based implants, especially Mg-based alloys under clinical trials. Info Schliessen | ||||
/// Osteokonduktivität In vivo corrosion of four magnesium alloys and the associated bone response. | Frank Witte, Volker Kaese, Heinz Haferkamp, Elinor Switzer, Andrea Meyer-Lindenberg, Carl Joachim Wirth, Henning Windhagen | 10.1016/j.biomaterials.2004.09.049 | 2005 | |
Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone–implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone–implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw | Henry Leonhardt, Adrian Franke, Niall M.H. Mcleod, Günter Lauer, Alexander Nowak | 10.1016/j.bjoms.2017.04.007 | 2017 | |
Abstract It is difficult to fix fractures of the condylar head of the mandible. Several techniques have been described which show satisfactory outcomes,but stability can be questionable, and some can cause irritation of the soft tissues. We describe a technique and first results of treating suchfractures with resorbable magnesium-based headless bone screws (Magnezix®2.7 mm CS; Syntellix AG, Hanover, Germany). Info Schliessen | ||||
/// Magnesium als Biomaterial Control of biodegradation of biocompatable magnesium alloys. | Guangling Song | 10.1016/j.corsci.2007.01.001 | 2007 | |
By utilising its rapid corrosion reaction and controlling its degradation process through Zn and Mn alloying, purification and anodization, chemically active magnesium can be developed into a biodegradable biocompatible implant material with a specific biodegradation process and tolerable hydrogen evolution rate, which may replace current problematic biodegradable polymers in applications. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Short-term results using a biodegradable magnesium screw for modified Chevron osteotomies | Christian Plaass, Sarah Ettinger, Lena Sonnow, Kiriakos Daniiidis, Sören Könneker, Andreas Weizbauer, Yvonne Noll, Janin Reifenrath, Leif Claassen, Christina Stukenborg-Colsman, Henning Windhagen | 10.1016/j.fas.2016.05.078 | 2016 | |
Background: Chevron osteotomies are one of the most common treatment options for Hallux valgus. Different degradable materials have been proposed for fixation, to avoid later hardware removal. This is the first larger series, describing the use of a novel Mg-based metallic biodegradable screw for the fixation of Chevron Osteotomies. Material and methods: 44 (45 feet) patients with Hallux valgus deformity were included in this prospective study. In all patients a modified Chevron Osteotomie was done. In all but 4 patients (5 feet) the osteotomie was fixed using a Herbert-type Mg-based screw. Clincial and radiological analysis were shedulded preoperative, 6, 12 weeks and 1 year postoperative. Results: The AOFAS (71–78.5; p = 0.71), FAAM-ADL (76.2– 98.3; p = 0.052), FAAM-Sport (57.2–95.5 (p = 0.03) and painNRS-scale (3.7–0.3; p = 0.096) all showed an improvement. The hallux valgus angle (25.1–10.3; p < 0.0001), intermetatarsal angle (12.8–7.4; p < 0.0001) and sesamoid position (2.3–1.0; p < 0.0001) improved significantly. Radiolucencies could be seen around the implants in all but one after 6 weeks and in 78% after 12 weeks. In seven patients there was some dorsal subluxation, rotation or medial shifting of the metatarsal heads within the first three month. One patient underwent revision. Conclusion: Mg-based implants can be used for the fixation of distal metatarsal osteotomies, but surgeons starting with the use of these implants should be aware of its proper use and radiographic appearance during healing Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Degradationsverhalten bioabsorbierbarer Magnesium-Implantate bei distalen Metatarsale-1-Osteotomien im MRT. | Christian Modrejewski, Christian Plaaß, Sarah Ettinger, Franco Caldarone, Henning Windhagen, Christina Stukenborg-Colsman, Christian von Falck, Lena Belenko | 10.1016/j.fuspru.2015.06.002 | 2015 | ![]() |
Einleitung: Ein neuartiges Implantatmaterial zur Herstellung von resorbierbaren Implantaten stellen Magnesiumlegierungen dar. Es bestehen nur wenige Erfahrungen zum Verhalten dieser Implantate im MRT. Die Darstellung des Degradationsvorganges im Menschen mittels MRT ist bisher nicht erfolgt. Material und Methoden: Vier Patientinnen wurden nach Implantation einer absorbierbaren Magnesium (Mg)-Schraube nach distaler Metatarsale-I-Osteotomie mittels MRT nachuntersucht. Die Untersuchungen fanden nach 3, 6, 12 sowie 36 Monaten statt. Ergebnisse: In vivo zeigten sich weniger Suszeptibilitätsartefakte bei Verwendung von Magnesium Implantaten vergleichend zu Standardimplantaten aus Stahl- oder Titanlegierungen. Die Knochenheilung verlief zeitgerecht. Der Degradationsprozess des Implantates konnte dokumentiert werden. Es zeigte sich ein begleitendes Knochenödem, dieses stand jedoch in keiner Korrelation zu den klinischen und subjektiven Ergebnissen. Diskussion: In dieser ersten Studie zeigt sich die Degradation der Mg-Implantate, jedoch auch ein Knochenmarksödem. Weitere Studien und Vergleich mit einem Kollektiv mit Standardimplantaten sind notwendig, um eine abschließende Aussage treffen zu können. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Frühergebnisse von distalen Metatarsale-1-Osteotomien bei Hallux valgus unter Verwendung eines biodegradierbaren Magnesium-Implantates | Christian Plaaß, Christian Modrejewski, Sarah Ettinger, Yvonne Noll, Leif Claassen, Kiriakos Daniilidis, Lena Belenko, Henning Windhagen, Christina Stukenborg-Colsman | 10.1016/j.fuspru.2015.06.015 | 2015 | ![]() |
Hintergrund: Die Verwendung eines resorbierbaren Implantates kann die Notwendigkeit einer Reoperation zur Metallentfernung nach Vorfußeingriffen vermeiden helfen. Magnesium-Legierungen stellen ein neuartiges Material zur Herstellung von biodegradierbaren Implantaten dar. Material und Methoden: In einer prospektiven klinischen Studie wurden Patienten, die ein biodegradierbares Magnesium-Implantat an unserem Haus erhielten, prospektiv nachverfolgt. Im Studienzeitraum von August 2013 bis Februar 2015 wurden 22 Patienten mit distaler Metatarsale-1-Osteotomie bei milder bis mäßiger Hallux valgus-Deformität mit einer MAGNEZIX®-Schraube versorgt. Ergebnisse: Eine Patientin erlitt eine traumatische Dislokation der Osteotomie, alle anderen zeigten eine sichere knöcherne Heilung nach 6 bis 12 Wochen. Bei einer Patientin trat eine prolongierte Schwellung auf. Die klinischen Ergebnisse waren vergleichbar mit publizierten Serien mit Stahl- oder Titanimplantaten. Diskussion: Biodegradierbare Mg-Implantate stellen eine Alternative zur Osteosynthese bei distalen metatarsale Osteotomien dar. Aktuell existieren nur kurzbis mittelfristige Ergebnisse, so dass für eine endgültige Beurteilung längerfristige Beobachtungszeiträume und größere Patientenkollektive notwendig bleiben. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies – 3 year results of a randomized clinical trial | Christian Plaass, Christian von Falck, Sarah Ettinger, Lena Sonnow, Franco Calderone, Andreas Weizbauer, Janin Reifenrath, Leif Claassen, Hazibullah Waizy, Kiriakos Daniilidis, Christina Stukenborg-Colsman, Henning Windhagen | 10.1016/j.jos.2017.11.005 | 2017 | ![]() |
Background: For the treatment of hallux valgus commonly distal metatarsal osteotomies are performed. Persistent problems due to the hardware and the necessity of hardware removal has led to the development of absorbable implants. To overcome the limitations of formerly used materials for biodegradable implants, recently magnesium has been introduced as a novel implant material. This is the first study showing mid-term clinical and radiological (MRI) data after using magnesium implants for fixation of distal metatarsal osteotomies. Material and methods: 26 patients with symptomatic hallux valgus were included in the study. They were randomly selected to be treated with a magnesium or standard titanium screw for fixation of a modified distal metatarsal osteotomy. The patients had a standardized clinical follow up and MRI investigation 3 years' post-surgery. The clinical tests included the range of motion of the MTP 1, the AOFAS, FAAM and SF-36 scores. Further on the pain was evaluated on a VAS. Results: Eight patients of the magnesium group and 6 of the titanium group had a full clinical and MRI follow up 3 years postoperatively. One patient was lost to follow-up. All other patients could be interviewed, but denied full study participation. There was a significant improvement for all tested clinical scores (AOFAS, SF-36, FAAM, Pain-NRS) from pre-to postoperative investigation, but no statistically relevant difference between the groups. Magnesium implants showed significantly less artifacts in the MRI, no implant related cysts were found and the implant was under degradation three years postoperatively. Conclusion: In this study, bioabsorbable magnesium implants showed comparable clinical results to titanium standard implants 3 years after distal modified metatarsal osteotomy and were more suitable for radiologic analysis. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Bioabsorbable metal screws in traumatology: A promising innovation | Roland Biber, Johannes Pauser, Matthias Brem, Hermann Josef Bail | 10.1016/j.tcr.2017.01.012 | 2017 | |
MAGNEZIX® CS (Syntellix AG, Hanover, Germany) is a bioabsorbable compression screw made of a magnesium alloy (MgYREZr). Currently there are only two clinical studies reporting on a limited number of elective patients who received this screw in a hallux valgus operation. We applied MAGNEZIX® CS for fixation of distal fibular fracture in a trauma patient who had sustained a bimalleolar fracture type AO 44-B2.3. Clinical course was uneventful, fracture healing occurred within three months. Follow-up X-rays showed a radiolucent area around the implant for some months, yet this radiolucent area had disappeared in the 17-months follow-up X-ray. Info Schliessen | ||||
/// Osteokonduktivität Implant-derived magnesium induces local neuronal production of CGRP to improve bonefracture healing in rats | Jiali Wang, Li-Zhen Zheng, Helen Le Huang, Frank Witte | 10.1038/nm.4162 | 2016 | |
Abstract Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-α (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown in vivo of the CGRP-receptor-encoding genes Calcrl or Ramp1substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL- and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation | Roland Biber, Johannes Pauser, Markus Geßlein, Hermann Josef Bail | 10.1155/2016/9673174 | 2016 | ![]() |
MAGNEZIX® (Syntellix AG, Hanover, Germany) is a biodegradable magnesium-based alloy (MgYREZr) which is currently used to manufacture bioabsorbable compression screws. To date, there are very few studies reporting on a limited number of elective foot surgeries using this innovative implant. This case report describes the application of this screw for osteochondral fracture fixation at the humeral capitulum next to a loose radial head prosthesis, which was revised at the same time. The clinical course was uneventful. Degradation of the magnesium alloy did not interfere with fracture healing. Showing an excellent clinical result and free range-of-motion, the contour of the implant was still visible in a one-year follow-up. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. | Hazibullah Waizy, Julia Diekmann, Andreas Weizbauer, Janin Reifenrath, Ivonne Bartsch, Volkmar Neubert, Robert Schavan, Henning Windhagen | 10.1177/0885328212472215 | 2013 | ![]() |
Biodegradable magnesium-based implants are currently being developed for use in orthopedic applications. The aim of this study was to investigate the acute, subacute, and chronic local effects on bone tissue as well as the systemic reactions to a magnesium-based (MgYREZr-alloy) screw containing rare earth elements. The upper part of the screw was implanted into the marrow cavity of the left femora of 15 adult rabbits (New Zealand White), and animals were euthanized 1 week, 12 weeks, and 52 weeks postoperatively. Blood samples were analyzed at set times, and radiographic examinations were performed to evaluate gas formation. There were no significant increased changes in blood values compared to normal levels. Histological examination revealed moderate bone formation with direct implant contact without a fibrous capsule. Histopathological evaluation of lung, liver, intestine, kidneys, pancreas, and spleen tissue samples showed no abnormalities. In summary, our data indicate that these magnesium-based screws containing rare earth elements have good biocompatibility and osteoconductivity without acute, subacute, or chronic toxicity. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Biodegradation of a magnesium alloy implant in the intercondylar femoral notch showed an appropriate response to the synovial membrane in a rabbit model in vivo. Journal of Biomaterials Applications | Marco Ezechieli, Julia Diekmann, Andreas Weizbauer, Christoph Becher, Elmar Willbold, Patrick Helmecke, Arne Lucas, Robert Schavan, Henning Windhagen | 10.1177/0885328214523322 | 2014 | |
Degradable magnesium alloys are promising biomaterials for orthopedic applications. The aim of this study was to evaluate the potential effects on both the synovial membrane (synovialis) and the synovial fluid (synovia) of the degradation products of a MgYREZr-pin implanted in the intercondylar femoral notch in a rabbit model. Thirty-six animals were randomized into two groups (MgYREZr or Ti6Al4V alloy) of 18 animals each. Each group was then divided into three subgroups with implantation periods of 1, 4, and 12 weeks, with six animals in each subgroup. The initial inflammatory reaction caused by the surgical trauma declined after 12 weeks of implantation, and elucidated a progressive recovery of the synovial membrane. Compared with control Ti6Al4V pins, there were no significant differences between the groups. However, after 12 weeks, recovery of the synovial membrane was more advanced in the titanium group, in which 92% showed no signs of synovitis, than in the magnesium group. A cytotoxicity test with L929 cells and human osteoblasts (HOB) was also conducted, according to EN ISO 10993-5/12, and no toxic leachable products were observed after 24 h of incubation. In conclusion, the MgYREZr alloy seems to be a suitable material for intra-articular degradable implants. Info Schliessen | ||||
/// Klinische Anwendung MAGNEZIX® Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study | Henning Windhagen, Kerstin Radtke, Andreas Weizbauer, Julia Diekmann, Yvonne Noll, Ulrike Kreimeyer, Robert Schavan, Christina Stukenborg-Colsman, Hazibullah Waizy | 10.1186/1475-925X-12-62 | 2013 | ![]() |
Purpose: Nondegradable steel-and titanium-based implants are commonly used in orthopedic surgery. Although they provide maximal stability, they are also associated with interference on imaging modalities, may induce stress shielding, and additional explantation procedures may be necessary. Alternatively, degradable polymer implants are mechanically weaker and induce foreign body reactions. Degradable magnesium-based stents are currently being investigated in clinical trials for use in cardiovascular medicine. The magnesium alloy MgYREZr demonstrates good biocompatibility and osteoconductive properties. The aim of this prospective, randomized, clinical pilot trial was to determine if magnesium-based MgYREZr screws are equivalent to standard titanium screws for fixation during chevron osteotomy in patients with a mild hallux valgus. Methods: Patients (n=26) were randomly assigned to undergo osteosynthesis using either titanium or degradable magnesium based implants of the same design. The 6 month follow-up period included clinical, laboratory, and radiographic assessments. Results: No significant differences were found in terms of the American Orthopaedic Foot and Ankle Society (AOFAS) score for hallux, visual analog scale for pain assessment, or range of motion (ROM) of the first metatarsophalangeal joint (MTPJ). No foreign body reactions, osteolysis, or systemic inflammatory reactions were detected. The groups were not significantly different in terms of radiographic or laboratory results. Conclusion: The radiographic and clinical results of this prospective controlled study demonstrate that degradable magnesium-based screws are equivalent to titanium screws for the treatment of mild hallux valgus deformities.
Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Biodegradable magnesium Herbert screw – image quality and artifacts with radiography, CT and MRI | Lena Sonnow, Sören Könneker, Peter M. Vogt, Frank Wacker, Christian von Falck | 10.1186/s12880-017-0187-7 | 2017 | |
Background: Magnesium alloys have recently been rediscovered as biodegradable implants in musculoskeletal surgery. This study is an ex-vivo trial to evaluate the imaging characteristics of magnesium implants in different imaging modalities as compared to conventional metallic implants. Methods: A CE-approved magnesium Herbert screw (MAGNEZIX®) and a titanium screw of the same dimensions (3.2x20 mm) were imaged using different modalities: digital radiography (DX), multidetector computed tomography (MDCT), high resolution flat panel CT (FPCT) and magnetic resonance imaging (MRI). The screws were scanned invitro and after implantation in a fresh chicken tibia in order to simulate surrounding bone and soft tissue.The images were quantitatively evaluated with respect to the overall image quality and the extent and intensity of artifacts. Results: In all modalities, the artifacts generated by the magnesium screw had a lesser extent and were less severe as compared to the titanium screw (mean difference of artifact size of solo scanned screws in DX: 0.7 mm, MDCT: 6.2 mm, FPCT: 5.9 mm and MRI: 4.73 mm; p < 0.05). In MDCT and FPCT multiplanar reformations and 3D reconstructions were superior as compared with the titanium screw and the metal-bone interface after implanting the screws in chicken cadavers was more clearly depicted. While the artifacts of the titanium screw could be effectively reduced using metal-artifact reduction sequences in MRI (WARP, mean reduction of 2.5 mm, p < 0.05), there was no significant difference for the magnesium screw. Conclusions: Magnesium implants generate significantly less artifacts in common imaging modalities (DX, MDCT, FPCT and MRI) as compared with conventional titanium implants and therefore may facilitate post-operative follow-up. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Biodegradierbare Magnesium Herbert Schraube in verschiedenen Modalitäten – Bildqualität und Artefakte | Lena Belenko, Sören Könneker, Frank Wacker, Christian von Falck | 10.1594/ecr2015/C-2339 | 2015 | |
Zielsetzung: Biodegradierbare Implantate aus Magnesiumverbindungen gehören zu den aktuellsten Entwicklungen in der muskuloskelettalen Chirurgie. Diese Studie untersucht das Bildverhalten von Magnesiumimplantaten in verschiedenen bildgebenden Modalitäten im Vergleich zu konventionellen Titanimplantaten. Material und Methodik: Eine CE-zertifizierte Magnesium Herbert Schraube (MAGNEZIX®) und eine Titanschraube mit den gleichen Dimensionen (3,2 × 20 mm) wurden in den folgenden Modalitäten untersucht: Konventionelle Radiografie (CR), Multidetektor Computertomografie (MDCT), hochauflösende Flachdetektor Computertomografie (FPCT) und Magnetresonanztomografie (MRT). Die Schrauben wurden sowohl in vitro als auch nach Implantation in eine frische Hühnertibia untersucht. Die Auswertung der Bilddaten erfolgte quantitativ bezüglich Bildqualität sowie Ausmaß und Intensität der Artefakte. Ergebnisse: In allen bildgebenden Modalitäten hatten die Artefakte der Magnesiumschraube ein kleineres Ausmaß und waren weniger beeinträchtigend im Vergleich zur Titanschraube (Mittelwert der Differenz der Artefaktgröße im CR: 0,7 mm, MDCT: 6,2 mm, FPCT: 5,9 mm und MRT: 4,73 mm; p < 0,05). In der multiplanaren Reformation und 3D Rekonstruktion der MDCT und FPCT war die Magnesiumschraube der Titanschraube ebenfalls überlegen. Die Metall-Knochen Grenze konnte deutlich besser unterschieden werden. Schlussfolgerungen: Magnesiumimplantate generieren signifikant weniger Artefakte in den gängigen bildgebenden Verfahren im Vergleich zu konventionellen Titanimplantaten und sind daher gut für post-operative Kontrollen geeignet.
Info Schliessen | ||||
/// Magnesium als Biomaterial Magnesium-based implants: a mini-review. | Bérengère J.C. Luthringer, Frank Feyerabend, Regine Willumeit-Römer | 10.1684/mrh.2015.0375 | 2014 | |
The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented. Magnesium and magnesium-based alloys in biomaterial applications have shifted again into the focus of the biomedical industry. Thanks to the first CE mark approvals of magnesium-based implants interest will increase further, as the hurdles for approval by e.g. the FDA have been lowered. One important aspect is the understanding/improvement of the production processes of the materials, and their quality. The other, even more important aspect is a deeper understanding of the underlying biological cell and tissue mechanisms in the targeted tissues, which is a prerequisite for facilitating future regulatory applications. Therefore, it is of the utmost importance to establish the correlations between the biological, biochemical, mechanical and microstructural properties of magnesium-based implants. This demands a highly interdisciplinary approach, requiring specialist input from each discipline. Info Schliessen | ||||
/// Wissenschaftliche Publikationen MAGNEZIX® Korrosionsprodukte eines degradierbaren Magnesiumpins haben keine negativen Effekte auf die Synovialmembran des Kniegelenks – eine in-vivo Vergleichsstudie mit Titanpins im Kaninchenmodell | Julia Diekmann, Marco Ezechieli, Christoph Becher, Robert Schavan, Arne Lucas, Patrick Helmecke, Henning Windhagen | 10.3205/13dkou546 | 2013 | |
Fragestellung: Derzeit werden zur operativen Fixierung des rupturierten vorderen Kreuzbandes Interferenzschrauben aus Titan oder bioresorbierbaren Polymeren eingesetzt. Permanente Implantate aus Stahl oder Titan bedingen in der Regel eine zweite Operation zur Entfernung des Osteosynthesematerials. Daher werden hier vorrangig resorbierbare Implantate eingesetzt. Die Nachteile bei bioresorbierbaren Polymeren sind häufig Fremdkörperreaktionen und Entzündungen der Synovialmembran, welche den Erfolg der Operation erheblich verringern. Magnesiumlegierungen sind eine vielversprechende Alternative, da diese einerseits resorbierbar sind und als biokompatibel gelten und ihnen außerdem eine osteokonduktive Wirkung zugeschrieben wird. Ziel dieser Studie war es, die Auswirkungen der Korrosionsprodukte der eingesetzten Magnesiumlegierung (MAGNEZIX®, Syntellix AG) auf die Synovia und die Synovialmembran des Kniegelenks zu untersuchen. Aufbauend auf den Ergebnissen dieses Versuches wird in einer Folgestudie die Testung mit einer Interferenzschraube erfolgen. Methodik: Als Versuchstiere dienten 36 weibliche Kaninchen der Rasse New Zealand White Rabbit. Die Tiere wurden in 3 Gruppen mit unterschiedlichen Implantationszeiten (1, 4, 12 Wochen) unterteilt, mit jeweils 12 Tieren in jeder Gruppe. Bei jedem Tier wurde in den linken Femur interkondylär ein Pin implantiert. 6 Tiere jeder Gruppe bekamen einen Magnesiumpin implantiert und die anderen 6 Tiere einen Titanpin als Kontrollgruppe. Jeweils prä- und postoperativ wurden Röntgenaufnahmen angefertigt und Blutproben entnommen. Am Ende der Versuchsdauer wurden die Tiere euthanasiert und beide Kniegelenke punktiert. Außerdem wurden Gewebeproben von der Synovialmembran des operierten und des kontralateralen Kniegelenks entnommen und histopathologisch untersucht. Zur Beurteilung der Synovia-Punktate wurde ein semiquantitativer Score angewandt. Die Proben der Synovialmembran wurden ebenfalls mittels semiquantitativem Synovialitis-Score nach Krenn ausgewertet. Ergebnisse und Schlussfolgerung: Zu keinem Zeitpunkt wurde röntgenologisch sowie klinisch eine Gasentwicklung beobachtet. Die Blutwerte von Kreatinin, Harnstoff, AST und ALT lagen im Referenzbereich. Sowohl in der Magnesiumgruppe als auch in der Titangruppe traten histopathologisch vergleichbare Veränderungen der Synovialmembran auf, welche sich in einer geringgradigen Verbreiterung der synovialen Deckzellschicht manifestierten. Histopathologie, Blutanalyse, klinische und röntgenologische Untersuchungen zeigten keine pathologischen Veränderungen, weder in der Kontrollgruppe noch in der Magnesiumgruppe. Die zu Beginn vorliegende geringgradige Synovialitis trat bei beiden Gruppen in gleichem Maße auf und ist auf den traumatischen Eingriff zurückzuführen. Die vorliegenden Ergebnisse zeigen eine gute Biokompatibilität und Verträglichkeit der eingesetzten Magnesiumlegierung in Bezug auf die Synovialmembran. Info Schliessen | ||||
/// Magnesium als Biomaterial Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations | Elmar Willbold, Andreas Weizbauer, Anneke Loos, Jan-Marten Seitz, Nina Angrisani, Henning Windhagen, Janin Reifenrath | DOI: 10.1002/jbm.a.35893 | 2016 | |
Abstract The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. Info Schliessen |
Gesammeltes Wissen
Publikationen und Literatur zu Grundlagen, Forschung und klinischer Anwendung von Magnesium und MAGNEZIX®.